
© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Industrial Ranting about Current
Computer Micro-Architectures

Or – I’ve done this a while now in the Silicon Industry so you probably should listen as I say stuff

September 28, 2022

Eric Quinnell, Ph.D.

Tesla AI Hardware

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Topics
 CPU Selection in One Clear Graph
 Branch Predictors and Natural Law
 Variable Length Decoding and Why OP Caches are The Worst™
 SMT is The Worst™, except when it’s The Best™
 Tesla AI Dojo D1
 Apple A14
 Quinnell’s 2nd Law of Computer Arithmetic
 Shameless Tesla AI Day-2 Plug
 Q&A

Caveats
 I do not speak on behalf of Tesla. My opinions are my own and are expressed merely to educate new engineers on why

they’re wrong.
 All content presented here is public domain. Any speculation on CPU reverse-engineering is mine alone, but probably right
 I’m happy to talk to the Tesla HotChips 2022 “Dojo System” paper (am co-author), but you’ll not hear anything not already

disclosed

Topics and Caveats

2

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

CPU Selection
In One Easy Graph

3

https://images.anandtech.com/doci/15603/sched-990.png

Evolution of the Samsung Exynos CPU
Microarchitecture, ISCA 2020

• The Power-Perf plot can determine the entire
selection of an industrial CPU. In this case, this
graph represents the end of the Samsung
custom CPU effort

• “Burn Down” paper we wrote before shutting
project down, publish the good, future lecture
on the bad/ugly (like right now)

• ARM A76 (Ares) was a new uarch, a design
triumph, labeled the “custom CPU killer”

Project shutdowns are complex decisions, and the
M5 could have fixed this…but quite frankly, with this
single perf/power curve, would YOU fund a custom
team ($100sM/year) or buy it off-the-shelf?

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Mongoose M5 vs Ares A76

4

https://en.wikichip.org/wiki/File:cortex-a76_block_diagram.svghttps://en.wikichip.org/wiki/File:mongoose_5_block_diagram.svg

UOP Cache
(Disabled)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Reading the Power/Perf Curve

5

https://images.anandtech.com/doci/15603/sched-990.png

• Thermal constraints are the current greatest threat to
compute

• Boost Mode and Benchmarking isn’t useable compute –
greater than 2GHz sustained is rare

• Performance is won by IPC and fundamentals
• Cache size matters

• Not just IPC. Power to DRAM >> power to
Cache. Less I/O bandwidth.

• IPC Latency matters more than frequency
• Mongoose M5 16-deep mis-predict vs Ares

A76 11-deep mis-predict
• ROI on performance features matters

• “Will this feature provide more IPC than the
cache-area equivalent?”

• ASICs with Vertical Integration always win on their
application, full stop. Just have to pay the engineers for it.

• Citations? Sure!
• Apple A6-M1 with IOS
• Google’s TPU with Deep-Mind, Search
• GPU Shaders with API drivers
• Is this really in question?

Boost/Benchmarking
Frequency wins here

Web Browsing (phones)
Always-Running (servers)

IPC+Cache wins here

“Pocket Mode” (phones)
Embedded Space
Perf/Area wins here

ASICs + Vertical
Integration

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

“Real Code” is Indirect Threading

For Whom are you building machines?

 Governments use Fortran

 HPC, Gaming use C/C++ (and Excel spreadsheets)

 AI uses MACs and Python. (That’s pretty much it.)

 The Internet, VMs use JS and JITs (this is most of the world)
– https://browserbench.org/Speedometer2.0/

– That’s ~1B instructions / iteration to sort a 100-deep text list.

– Try it on your phone and laptop right now, see which is faster

– Indirect branches and integer ALUs

– This is for SW’s dev benefit, not HW. There are exponentially
more of them (SW), they win.

 We knew about this phenomenon in 2005. What is SPEC
benchmarking again?

– https://www.amazon.com/Virtual-Machines-Versatile-Platforms-Architecture/dp/1558609105

 The newest CPU uarchs are heavy with indirect-branch target
storage, algorithms like IT-TAGE (Seznec).

6

https://en.wikipedia.org/wiki/Threaded_code#Indirect_threading

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

 Dr. Daniel Jimenez (Texas A&M) in his perceptron-based branch-prediction
research shows that global-history (ghist) auto-correlation on generic code follows
a power-law. (I told you, Daniel and Jim that I’d bring this up someday)

 Dr. Tarjan and Dr. Skadron (Univ of VA) noted “Theta” for generic branches to be

𝜃 = 1.93𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠 +
𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠

2
= (1.93 + 0.5)𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠

= 2.43 ∗ 𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠

 Dr. James Dundas (ARM) recognized some time ago that:

φ =
1 − 5

2
= ~1.618 = "golden ratio“

φ =
3φ

2
= ~2.427

𝜃 =
3φ

2
∗ 𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠

 Dr. Seznec has published GEometric History Length and O-GEHL predictors

 Dr. Yasuo Ishii (ARM) extended GEHL to local history

 Dr. Quinnell (me) asks – “Is code, therefore, constrained by natural law!?”

 Apparently you need a PhD to notice this kind of thing…

Side Quest – Speaking of Branch Prediction…

7

[Jimenez, lots of papers]

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Auto-Correlation of Ghist vs Branch Time Lag, CBP-5

8

0

0.2

0.4

0.6

0.8

1

1.2

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

8MB memcpy

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

lua

0

0.05

0.1

0.15

0.2

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

bzip2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

DGEMM

0

0.05

0.1

0.15

0.2

0.25

0.3

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

AutoCorrelation (abs value) 400 traces 100m branches

AutoC(abs)

average

golden*ln

Φ*ln(ghist)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Fibonacci in CBP-5

9

{0-3,0-5,1-8,2-13,3-21,5-34,8-55,13-89}

 I replaced all TAGE parameters with Fibonacci geometric series equivalents.
– MPKI was exactly the same
– Don’t believe me? Do it yourself! CBP-5 is public and available

 SHP – vs several successful hashes and their variants, various sizes, tables.
– Example below. Wasn’t always “lowest lowest” mpki, but certainly unbeatable when constraining ghist length

Run MPKI #Ghist bits

Variant of published
SHP hash

4.720 160

Fibonnaci 4.718 89

 Code, and therefore AI Robots, is constrained by Natural Law!
– We can (maybe) defeat them if the take over!

– Asimov is smiling.

 See me after lecture for a tin-foil hat

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Op Caches are The Worst™

AMD’s Zen 2
 Notice the “ITA” – Indirect Target Array. Notice its

expansion in subsequent CPUs..
 4x Int ALUs and 3x AGUs, LD/LD/ST
 6-wide INT dispatch, 8-wide Retire

Wait – 4-wide Decode!?! For 8-wide Retire?!

 Why? B/c x86 ISA is a variable-length decode
– Various techniques to up IPC – Marker bits, pre-decoders, collapsing

instruction queues, parallel speculative decoding

 Solution here is the OP Cache
– Repeated kernels can read out up to 8-mops / cycle
– OP Caches derive historically from Trace Caches, originally intended to

increase zero-bubble branches and instruction throughput
 Similar Block-Diagram for wider MOP decode in Intel’s Skylake uarch

10

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2#Block_Diagram

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Op Caches are The Worst ™

11

https://en.wikichip.org/wiki/intel/microarchitectures/tremont

OP caches are large, complex, make branch prediction logic
replicate, and use lots of power.

1. ~100-bit read/write array (vs the 16-32-bit original instruction)
2. Redundant branch prediction hardware
3. OP cache specific fetch-line buffering
4. OP cache micro-tags and CAMs in parallel with decode path

1-4 vs saving Decode power. Are we sure it’s less overall?
(Mongoose M5’s UOP Cache was not lower power overall)

Intel’s Tremont – No-OP Cache
 Intel’s Tremont avoided OP caches altogether, solving

the x86 decode/throughput by alternating basic-block
fetches across 2x fetch paths

 Result is an effective “2x3-wide decode” on two basic-
block fetch

 Note – are the “Reservation Stations” classic Tomasulo’s
algorithm, or are they clever PRFs? Each has a tradeoff.

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

OP Caches in ARM? RISC-V?
 Cortex A-77 did add a “MOP Cache”
 6-wide MOP “decode” vs 4-wide native decode
 A-77 still supports AArch32

– Samsung Mongoose M1-5 supported AArch32 and Thumb

 ARM is dropping support for Thumb/AArch32 in Makalu (2022)
generation, making all instructions 32-bit aligned

 RISC-V has optional variable-length instructions (16-bit) for
code compression. There is reserved space in case future
instructions want to go > 32-bits.

Variable length vs OP Cache tradeoff
 Variable length instructions allow code compression – great for

embedded applications
 High-perf CPU indirect-threaded code needs > 4-wide decode

to compete.
 OP caches are a variable-length instruction solution

Trends
 ARMv9 is transitioning to fixed length while RISC-V is adding

variable-length with reserved expansion
 Is a non-fixed instruction alignment considered “RISC”?

@ RISC-V – perhaps the proper way to support future instructions is
not to infinitely expand the space, but rather allow for deletion of
antiquated instructions.

12

https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a77

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

SMT – the good, bad, and always ugly

This really should be an entire talk
(and I need to take more time with citations here…maybe a grad student should do this as a paper)

SMT bad

Claim: SMT in an out-of-order, virtualized, non-shared context will be beaten by single-
threaded SMP

 2x85% IPC SMP cores at ½ the size beat ~120% IPC SMT

 Full-context SMT takes >> 10% area in reality. Find a die shot (not a paper or claim)
where this is untrue.

 “Noisy neighbor effect” with cross-polluting caches

 Spectre-style security problems

 HW-multi thread scheduling unable to predict SW multi-thread intent, forecasting,
prefetching

 All threads must sleep before powering down

 Out-of-order resources lost to hold variable SMT retire state

 Turn off hyperthreading and see for yourself. Did you lose anything?

SMT good

(“Poor-man’s out of order”)

Claim: SMT in a shared-context, SW controlled, scalar and in-order throughput machine
gains scale-able benefits of concurrent control and execution

 Qualcomm’s DSP Hexagon

 Tesla’s Dojo AI D1

13

https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-
against-intel-and-amd/9

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

High throughput, general purpose CPU

DOJO nodes are full-fledged computers
• Dedicated CPU, local memory, communication

interface

Superscalar, multi-threaded organization
• Optimized for high-throughput math applications

rather than control heavy code

Custom ISA optimized for ML kernels

M i c r o a r c h i t e c t u r e o f t h e D O J O n o d e

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

P r o c e s s i n g p i p e l i n e

32B fetch window holding up to 8 instructions

8-wide decode handling 2 threads per cycle

4-wide scalar scheduler, 4-way SMT
• 2 integer ALUs
• 2 address units
• Register file replicated per thread

2-wide vector scheduler, 4-way SMT
• 64B wide SIMD unit
• 8x8x4 matrix multiplication units

SMT support focuses on single threaded application
• No virtual memory, limited protection

mechanisms, SW-managed sharing of resources
• Typical application uses 1 or 2 compute threads

and 1-2 communication threads

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Pipeline width reduces progressively
• 8-way in Decode
• 4-way in the Scalar engine
• 2-way in the Vector engine

Simple primitives can execute early in Decode
• Looping, list parsing
• Predication

Scalar instructions
• Regular integer code, address generation
• Network synchronization primitives

Vector datapath
• 8x8 matrix multiplication instructions
• 64B SIMD pipeline
• Special ML formats (CFP8, storage CFP16)
• Special ML instructions (e.g., stochastic

rounding, etc.)

D a t a p a t h

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

What about Apple?
 Massive Caches

– Not really a mystery – seen from space

– Likely the greatest contributor to low energy –
extremely fewer accesses to DRAM than competitors

– No other ARM competitor comes even close to paying
the area for this significant advantage

 Measured massive Indirect Branch Target
chains

 Tons of simple ALUs, 3xLD to feed it

 Extremely short mis-predict pipe (IPC >>
frequency)

 No OP cache, 8-Wide decode fixed-width
instructions.

– Why not 10-wide? Why not more? Fixed width decode is cheap

 Vertical Integration with SW
– Adding cute ISA instructions does not make up for lacking this

 SMP, not SMT

17

https://images.anandtech.com/doci/16226/Firestorm.png

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Bonus Round: Quinnell’s 2nd Law of Computer Arithmetic

18

You cannot add faster than you can add

Fallacies include:
• Trying LUTs/ROMs/case statements instead of an adder for your “but I don’t need all adder bits” adder
• Attempting generate/kill derivatives on LOPs, but wanting a precise result (we call that an “adder”)
• Trying to be clever with carry-only trees combined with other carry only trees and mux inferring a sum bit (we call that an adder)
• Trying to deduce an adder answer or bit without “the carry”. Works for 99% of all possible cases you say, and only not that 1% “propagate carry” case

• The most common “compares” in all code are “== 0” or the identity compare. Which is a full carry. Code Gaussian doesn’t match the theoretical “universal hash” math spread.

• Trying to be clever with circuit tricks like domino logic or cascaded FETs (they’re adders with not-cmos!)
• “End-around-carry (EAC)” adders (it’s an adder and an incrementor that go as fast as…themselves)
• Thinking a $popcnt isn’t just a MUL compression and adder
• Trying “higher radix” and writing papers about non-memory formats to avoid carries

• Which you translate to/from 2s complement or IEEE format, which requires…yup, an adder and full carry BOTH ways. So your total time processing same answer is worse, congrats!!
• Nobody does kernels resident only in regfiles

If it has ANYTHING to do with adding, do “assign z = a + b” and watch synthesis beat you at it in all forms.

Really, I can’t read any more of these. Research somewhere else, put a fork in it, this one’s done. Very little in uarch has been scrutinized quite like the adder.

(What’s the 1st law? I don’t remember, nobody remembers the 1st law of anything)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Shameless Plug: AI Day 2

 Sept 30, 2022

 ~7:30-ish PM livestream

 Robots and Cars and Supercomputers

 You’re not watching “sportsball”
anyway, you nerds, you

19

Awesome Tesla technical links

 https://www.youtube.com/watch?v=jPCV4GKX9Dw – CVPR ’22
 https://www.youtube.com/watch?v=hx7BXih7zx8 – ScaledML ‘20 – at 8:40, see the “stop sign” problem
 https://www.youtube.com/watch?v=j0z4FweCy4M – AI Day 1, ’21
 https://www.youtube.com/watch?v=rsBbt3TxKGg – 3rd party video, but Giga Presses are cool
 See Tesla HotChips ‘21 and ’22 (Dojo slides are from the ‘22 talks)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Car Picture

20

