Industrial Ranting about Current
Computer Micro-Architectures

Or - I've done this a while now in the Silicon Industry so you probably should listen as | say stuff

September 28, 2022
Eric Quinnell, Ph.D.
Tesla Al Hardware

T=5Lnm
Topics and Caveats
Topics
" CPU Selection in One Clear Graph
. Branch Predictors and Natural Law
" Variable Length Decoding and Why OP Caches are The Worst™
= SMT is The Worst™ except when it's The Best™
. Tesla Al Dojo D1
= Apple A14
= Quinnell's 2" Law of Computer Arithmetic
= Shameless Tesla Al Day-2 Plug
. Q&A
Caveats
] | do not speak on behalf of Tesla. My opinions are my own and are expressed merely to educate new engineers on why

they’re wrong.
] All content presented here is public domain. Any speculation on CPU reverse-engineering is mine alone, but probably right

= I’'m happy to talk to the Tesla HotChips 2022 “Dojo System” paper (am co-author), but you'll not hear anything not already
disclosed

T=SLA
CPU Selection

Exynos 990 Scheduler Power Curves (64bit)
In One Easy Graph

3.5

—e— Cortex A55
—e— Cortex A76
Evolution of the Samsung Exynos CPU - —e—Exynos M5

Microarchitecture, ISCA 2020

* The Power-Perf plot can determine the entire ol
selection of an industrial CPU. In this case, this i
graph represents the end of the Samsung
custom CPU effort :g_ h 1

* “Burn Down” paper we wrote before shutting E
project down, publish the good, future lecture & w
on the bad/ugly (like right now) h *

* ARM A76 (Ares) was a new uarch, a design
triumph, labeled the “custom CPU killer” -

Project shutdowns are complex decisions, and the o

M5 could have fixed this...but quite frankly, with this

single perf/power curve, would YOU fund a custom

team ($100sM/year) or buy it off-the-shelf? " 200 400 600 800 1000

Scheduler Capacity Scale (0-1023)

https://images.anandtech.com/doci/15603/sched-990.png

T=5Lnm
Mongoose M5 vs Ares A76
Branch Predictor |Return =
Front End um;:r;;n;wche — ; ::'::i&:, M L1 Ir;e:trlg;tfx;che ;’(u‘::%)
aao;‘r.yd- s Wain 8T8 (6K) low«:ydo
. I nstraction Feteh |
I 43 instrutonsicyce ”
Tl = =
5 Rom) Front (16 x 32b))
+ * * T+ T T End [" " I z
I Rename / Allocate | Retirement [
W?'ﬂ'i’fi"l’l Rararma TANGER] Comirk <
ReOrder Buffer (128-entry) E 5
: m ExExxxxa | B
i Frrxrrer gz
2 ® ,3 = ue (120 = = §
w T g T

Execution Engine

ali'ﬂ"ﬂZE

L1 Data Cache

@ Execution Engine
64KiB 8-Way

L1 Data Cache
64 KiB 4-Way

https://en.wikichip.org/wiki/File:mongoose 5 block diagram.svg https://en.wikichip.org/wiki/File:cortex-a76 block diagram.svg

Reading the Power/Perf Curve

* Thermal constraints are the current greatest threat to
compute
* Boost Mode and Benchmarking isn’t useable compute —
greater than 2GHz sustained is rare
* Performance is won by IPC and fundamentals
* Cache size matters
* Not just IPC. Power to DRAM >> power to
Cache. Less I/0 bandwidth.
* |IPC Latency matters more than frequency
* Mongoose M5 16-deep mis-predict vs Ares
A76 11-deep mis-predict
¢ ROl on performance features matters
* “Will this feature provide more IPC than the
cache-area equivalent?”

e ASICs with Vertical Integration always win on their
application, full stop. Just have to pay the engineers for it.
» C(Citations? Sure!
* Apple A6-M1 with I0S
* Google’s TPU with Deep-Mind, Search
* GPU Shaders with API drivers
* |Is this really in question?

Power (W)

1.5

3.5

2.5

“Pocket Mode” (phones)
Enfbedded Space

Perf/Area wins here

|
T=5Lnm
Exynos 990 Scheduler Power Curves (64bit)

—e— Cortex AS55
—a— Cortex A76

—&—Exynos M5

Boost/Benchmarking
Frequency wins here

Web Browsing (phones)
Always-Running (servers)
IPC+Cache wins here

ASICs + Vertical
Integration

200 400 600 800 1000

Scheduler Capacity Scale (0-1023)

https://images.anandtech.com/doci/15603/sched-990.png

“Real Code” is Indirect Threading

start:
ip = &th
Jump *(*
thread:
&i_pushA
&i_pushB
&i_add

i _pushA:
&push
&A
i_pushB:
&push
&B
i_add:
&add
push:
*sp+t =
Jump *(*
add:
addendl
addend2
*sp+t =
Jump *(*

https:

For Whom are you building machines?

Governments use Fortran

HPC, Gaming use C/C++ e spossnoes)

Al uses MACs and Python. s ety muen)

The Internet, VMs use JS and JITs (this is most of the world)

read // points to '&i_pushA’

ip) // follow pointers to 1st instruction of 'push’', DO NOT advance ip yet .

*¥(*ip + 1) // look 1 past start of indirect block for operand address
++ip) // advance ip in thread, jump through next indirect block to next subroutine

on

*__Sp

= ’?‘--sp

addendl + addend2
++ip)

//en.wikipedia.org/wiki/Threaded code#Indirect threading

https://browserbench.org/Speedometer2.0/

That's ~1B instructions / iteration to sort a 100-deep text list.
Try it on your phone and laptop right now, see which is faster
Indirect branches and integer ALUs

This is for SW’s dev benefit, not HW. There are exponentially
more of them (SW), they win.

We knew about this phenomenon in 2005. What is SPEC
benchmarking again?

https://www.amazon.com/Virtual-Machines-Versatile-Platforms-Architecture/dp/1558609105

The newest CPU uarchs are heavy with indirect-branch target
storage, algorithms like IT-TAGE (Seznec).

Side Quest — Speaking of Branch Prediction...

Dr. Daniel Jimenez (Texas A&M) in his perceptron-based branch-prediction

research shows that global-history (ghist) auto-correlation on generic code follows

a power-|aW (I told you, Daniel and Jim that I'd bring this up someday)

Dr. Tarjan and Dr. Skadron (Univ of VA) noted “Theta” for generic branches to be

numTables
0 = 1.93numTables + —

= (1.93 + 0.5)numTables
= 2.43 * numTables

Dr. James Dundas (ARM) recognized some time ago that:

_1-+5
T2

= ~1.618 = "golden ratio“

3
9= 7@ = ~2.427

©

6= 7@ * numTables

Dr. Seznec has published GEometric History Length and O-GEHL predictors
Dr. Yasuo Ishii (ARM) extended GEHL to local history

Dr. Quinnell (me) asks — “Is code, therefore, constrained by natural law!?”
Apparently you need a PhD to notice this kind of thing...

0.8 4

0.6 -

0.4 -

+ Correlation Coelficients
— Fitted Inverse Linear Curve

L S o 4t
. N -+ * . *
+ ety wpat sg o *e +
P AT S I S > L L 7]
L4 - L O
. 8 tee ; +* s o *
0 50 100 *

i

[Jimenez, lots of papers]

T=5Lnm

Auto-Correlation of Ghist vs Branch Time Lag, CBP-5

1.2

8MVIB memcpy

1
e
0.« LTI RN T R
PPN AR R
o L

o o o O Vo N N @) T e 0 0 TN 0 N S) M B o 9 T ¥ I A @) B o
"HANN < O NO0OOODOANMS N O
R B I B B I

0.8

DGEMM

0.6

0.4

0.2

0 “‘HM.\HH‘\ \HHMH\
WM# TR EHTR e S

-0.2

-0.4

0.4
0.3
0.2

0.1

-0.1

-0.2

0.3

0.25

0.2

0.15

0.1

0.05

0.2

lua

0.15

0_1‘ | | |

T

o
o~

0.05

7
o

—
<t N O™~ O Ad NN < N ~ o

100
111
122
133
144
155
166
177
188

AutoCorrelation (abs value) 400 traces 100m branches

mmm AutoC(abs)

e g\Verage

e golden*In

1
9
17

25

33
41

d*In(ghist)

97 =
105 =
113 2
121
129
137 2
145 3

49 =
57 %
65
73 %
81
89
153 2
161
169
177 &
185

Fi

] I re

. SH

bonacci in CBP-5

{0-3,0-5,1-8,2-13,3-21,5-34,8-55,13-89}

placed all TAGE parameters with Fibonacci geometric series equivalents.
MPKI was exactly the same
Don’t believe me? Do it yourself! CBP-5 is public and available
P — vs several successful hashes and their variants, various sizes, tables.
Example below. Wasn’t always “lowest lowest” mpki, but certainly unbeatable when constraining ghist length

Variant of published 4.720 160
SHP hash
Fibonnaci 4718 89

Code, and therefore Al Robots, is constrained by Natural Law!
- We can (maybe) defeat them if the take over!
- Asimov is smiling.

See me after lecture for a tin-foil hat

SLmA

Mext Addrass Logic ‘
Op Caches are The Worst™ E ——

AMD’s Zen 2

» Notice the “ITA” — Indirect Target Array. Notice its
expansion in subsequent CPUs..

= 4xIntALUs and 3x AGUs, LD/LD/ST
= 6-wide INT dispatch, 8-wide Retire

Front End

Wait — 4-wide Decode!?! For 8-wide Retire?!

= Why? B/c x86 ISA is a variable-length decode

— Various techniques to up IPC — Marker bits, pre-decoders, collapsing
instruction queues, parallel speculative decoding

= Solution here is the OP Cache

— Repeated kernels can read out up to 8-mops / cycle

— OP Caches derive historically from Trace Caches, originally intended to
increase zero-bubble branches and instruction throughput

" Similar Block-Diagram for wider MOP decode in Intel’s Skylake uarch
https://en.wikichip.org/wiki/intel/microarchitectures/skylake (server)

EX

@
-

https://en.wikichip.org/wiki/amd/microarchitectures/zen 2#Block Diagram

Op Caches are The Worst ™

Front-End L1 Instruction Cache
Cluster (FEC)) Tkl B

328
(2x168)
[mtrcimpine omenm) |

Clusterl

3-Way Decoda

= = e

HOP HOP uo P

s
Secyerces
oM
oM

T IDI
| instuction Decode Queve | [mstuction Decode Queue
. XQ Queue |
=]
N B
‘ s R!nam&ﬁlmam:::ﬁemenl ‘ g E 0
T2
i< @ D
e SRR G RO AN ; LD 1O = 9 | (1]
* [[[[o =) =R Ve = o
| |mwmim | | saion i Saion iR | Pergt] A (1 Susw (| Saion () A @ [N
g T [mm] [wor T [®r | [&n] (S - [Ewel [Eeel] x & (] 0 : n
S | Integer Physical RegisterFile | ’Ve(mr?hysmal Registeane‘ i g ! v m
! : ' L == 9
i i o=
!. Fl < W

. « Cluster (MEC)
L1 DataCache pata 1]
32KiB 8-Way

L2 Prefetcher

https://en.wikichip.org/wiki/intel/microarchitectures/tremont

—
T=5Lnmn

OP caches are large, complex, make branch prediction logic
replicate, and use lots of power.

~100-bit read/write array (vs the 16-32-bit original instruction)
Redundant branch prediction hardware

OP cache specific fetch-line buffering

OP cache micro-tags and CAMs in parallel with decode path

.

1-4 vs saving Decode power. Are we sure it’s less overall?
(Mongoose M5’s UOP Cache was not lower power overall)

Intel’s Tremont — No-OP Cache

Intel’s Tremont avoided OP caches altogether, solving
the x86 decode/throughput by alternating basic-block
fetches across 2x fetch paths

Result is an effective “2x3-wide decode” on two basic-
block fetch

Note — are the “Reservation Stations” classic Tomasulo’s
algorithm, or are they clever PRFs? Each has a tradeoff.

OP Caches in ARM? RISC-V?

Branch Predictor | Retum
(BPU) Stack

WanoBTB (G4-entry)

MicroBTB (64-eriry)

L1 Instruction Cache
64 KiB 4-Way

Instruction TLB
(48-entry)

Main BTB (810 16 Bytes/cycle Fl’Ol’It
{ Instruction Fetch |E nd
4-8 Instructions/cycle &
N
MOP Cache | | Decode Queue | g
(1.5K-entries)| (16 x 32b))
Inst last Inst Inst l
n
4-Way Decode
1-6 MOPs
MOP MOP MOP MOP
1-4 MOPs
mMoP MOP MoP MOP Mo MOoP
Renarme | Allocate | Commit
ReOrder Buffer (160-entry)
wor wor wor wor wor wor wor wor wor wor c
2
Dispatch = gy
p = ul &
Bl v
WOP WOP WOP WOP WOP WOP WOP WOP WOP 0P = ::
Tssue] g r
integer Issue Queue PU SSUQEHIH LSU Fillll Eucun (] = ol
E:!E:rﬁ o
WOP @OP OP OP wOP uOP wor por wae pop uoP o g 5
¥
(Brench] [Branch] [AWT] AW [AWT] AW ([AD) [AD]| [&6U] [K60] [(o <
..----- L A -- §
& Cow_| [emuL] B
i ' :
LSuU i 9
EUs Load Buffer | [Store Buffer -])
(85-entry) | | (90-entry) 2N i
- . 3 [l o
Execution Engine sy 1y %, o
B, ey fo
Data TLB g
L1 Data Cache .“3‘:'*?’
64 KiB 4-Way =

https://en.wikichip.org/wiki/arm holdings/microarchitectures/cortex-a77

3
if
aphyaze xz

e
o

] Cortex A-77 did add a “MOP Cache”
] 6-wide MOP “decode” vs 4-wide native decode

] A-77 still supports AArch32
- Samsung Mongoose M1-5 supported AArch32 and Thumb
" ARM is dropping support for Thumb/AArch32 in Makalu (2022)
generation, making all instructions 32-bit aligned

] RISC-V has optional variable-length instructions (16-bit) for
code compression. There is reserved space in case future
instructions want to go > 32-bits.

Variable length vs OP Cache tradeoff

" Variable length instructions allow code compression — great for
embedded applications

" High-perf CPU indirect-threaded code needs > 4-wide decode

to compete.
" OP caches are a variable-length instruction solution
Trends

. ARMVY is transitioning to fixed length while RISC-V is adding
variable-length with reserved expansion

" Is a non-fixed instruction alignment considered “RISC”?

@ RISC-V - perhaps the proper way to support future instructions is
not to infinitely expand the space, but rather allow for deletion of
antiquated instructions.

T=5Lnm
SMT - the gOOd’ bad’ and alwayS ugly Amazon EC2 Cost Per SPEC Test (64 rate/vCPU)

mm6g.16xlarge (Graviton2)

. . B mb5a.16xlarge (EPYC1)
This really should be an entire talk

mm5Sn.16xlarge (Xeon Platinum)
(and | need to take more time with citations here...maybe a grad student should do this as a paper)

$5.38
SMT bad SPECInt2006 $8.90
Claim: SMT in an out-of-order, virtualized, non-shared context will be beaten by single- #o.58
threaded SMP -
. 2x85% IPC SMP cores at %z the size beat ~120% IPC SMT SPECFp2006_C/C++ . $6.20
. Full-context SMT takes >> 10% area in reality. Find a die shot (not a paper or claim) $3:58

where this is untrue.
. “Noisy neighbor effect” with cross-polluting caches - $4'°2$7’ .
= Spectre-style security problems $7.59
. HW-multi thread scheduling unable to predict SW multi-thread intent, forecasting,
prefetching $10.37
. All threads must sleep before powering down D $f;65: ®
= Out-of-order resources lost to hold variable SMT retire state
= Turn off hyperthreading and see for yourself. Did you lose anything? $9.23
SPEC2006 $15.11
$14.14
SMT good
(“Poor-man’s out of order”) $14.40
Claim: SMT in a shared-context, SW controlled, scalar and in-order throughput machine SPEC2017 _ $24.36
gains scale-able benefits of concurrent control and execution $23.17
. Qualcomm’s DSP Hexagon .55
= Tesla’s Dojo Al D1 SPEC2006+2017 ; $39.47
$37.30
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm- $0 $16 $50 . §40 $50

against-intel-and-amd/9 Cost Per Run (USD)

Microarchitecture of the DOJO nodTe

High throughput, general purpose CPU

DOJO nod full-fledeed 648 to local SRAM
nodaes are rtull-tfieage Computers T 3

. . »
* Dedicated CPU, local memory, communication L) 648 from local
. SRAM
interface Decode x2

Superscalar, multi-threaded organization Scaiox Sehealles A
e Optimized for high-throughput math applications SRAM i)

rather than control heavy code (1.25MB)
Scalar RegFile x4

A A A
: v ¥
Custom ISA optimized for ML kernels H
SMT Vector Scheduler

Vector RegFile

Processing pipeline

32B fetch window holding up to 8 instructions

8-wide decode handling 2 threads per cycle : I-Cache

64B to local SRAM
4-wide scalar scheduler, 4-way SMT Fetch buffer x4 X

* 2integer ALUs L 648 fomlocal
e 2 address units Decode x2

* Register file replicated per thread
Scalar Scheduler x4 =

2-wide vector scheduler, 4-way SMT SIAH
(1.25MB)

* 64B wide SIMD unit Scalar RegFile x4

e 8x8x4 matrix multiplication units 4) ;
. [[ﬂ
SMT support focuses on single threaded application SMT Vector Scheduler
e No virtual memory, limited protection
mechanisms, SW-managed sharing of resources

Typical application uses 1 or 2 compute threads
and 1-2 communication threads

Vector RegFile

Pipeline width reduces progressively
e 8-way in Decode

* 4-way in the Scalar engine

e 2-way in the Vector engine

Simple primitives can execute early in Decode
* Looping, list parsing
* Predication

Scalar instructions
* Regularinteger code, address generation
* Network synchronization primitives

Vector datapath
8x8 matrix multiplication instructions
64B SIMD pipeline
Special ML formats (CFP8, storage CFP16)
Special ML instructions (e.g., stochastic
rounding, etc.)

Datapath

SRAM
(1.25MB)

A4

Decode x2

¥
| Scalar Scheduler x4
v Y Y pJ
‘ Scalar RegFile x4
A A A
¥ ¥

A
v
8B St

A4

NORTH
1288

NOC
648 to local SRAM Router
o~ —
— »
648 from local
A

SRAM

SMT Vector Schedu

A4

Vector RegFile

A A
¥

MatMul
8x8x4

4
Y

4

What about Apple?

" Massive Caches
- Not really a mystery — seen from space

- Likely the greatest contributor to low energy —
extremely fewer accesses to DRAM than competitors

- No other ARM competitor comes even close to paying
the area for this significant advantage

. Measured massive Indirect Branch Target
chains
. Tons of simple ALUs, 3xLD to feed it

" Extremely short mis-predict pipe (IPC >>
frequency)
. No OP cache, 8-Wide decode fixed-width

instructions.
- Why not 10-wide? Why not more? Fixed width decode is cheap

. Vertical Integration with SW

- Adding cute ISA instructions does not make up for lacking this

] SMP, not SMT

T=5Lnm
>=192KB L1l (Herzrzzt;iergs‘:ns) A@pu@ Aﬂé‘}
Firestorm

8-Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

FP Rename
PRF ~384?? Entries

INT Rename
PRF ~3547?? Entries

FP/SIMD + fDIV

~154e LDQ | ~106e STQ
256pg 3072pg
L1-DTLB L2-TLB

IANANDIECH

128KB L1D

https://images.anandtech.com/doci/16226/Firestorm.png

Bonus Round: Quinnell’'s 2" Law of Computer Arithmetic

You cannot add faster than you can add

Fallacies include:
Trying LUTs/ROMs/case statements instead of an adder for your “but | don’t need all adder bits” adder
Attempting generate/kill derivatives on LOPs, but wanting a precise result (we call that an “adder”)
Trying to be clever with carry-only trees combined with other carry only trees and mux inferring a sum bit (we call that an adder)

Trying to deduce an adder answer or bit without “the carry”. Works for 99% of all possible cases you say, and only not that 1% “propagate carry” case
The most common “compares” in all code are “== 0" or the identity compare. Which is a full carry. Code Gaussian doesn’t match the theoretical “universal hash” math spread.

Trying to be clever with circuit tricks like domino logic or cascaded FETs (they’re adders with not-cmos!)
“End-around-carry (EAC)” adders (it’s an adder and an incrementor that go as fast as...themselves)
Thinking a Spopcnt isn’t just a MUL compression and adder

Trying “higher radix” and writing papers about non-memory formats to avoid carries
Which you translate to/from 2s complement or IEEE format, which requires...yup, an adder and full carry BOTH ways. So your total time processing same answer is worse, congrats!!
Nobody does kernels resident only in regfiles

If it has ANYTHING to do with adding, do “assign z = a + b” and watch synthesis beat you at it in all forms.

Really, | can’t read any more of these. Research somewhere else, put a fork in it, this one’s done. Very little in uarch has been scrutinized quite like the adder.

(What'’s the 1%t law? | don’t remember, nobody remembers the 15t law of anything)

Shameless Plug: Al Day 2

= Sept 30, 2022
= ~7:30-ish PM livestream
» Robots and Cars and Supercomputers

» You're not watching “sportsball”

anyway, you nerds, you .
yway, y y ‘/7
g(@\
2"

Awesome Tesla technical links

https://www.youtube.com/watch?v=jPCV4GKX9Dw — CVPR ’22
https://www.youtube.com/watch?v=hx7BXih7zx8 — ScaledML ‘20 — at 8:40, see the “stop sign” problem
https://www.youtube.com/watch?v=j0z4FweCy4M — Al Day 1, '21
https://www.youtube.com/watch?v=rsBbt3TxKGg — 3" party video, but Giga Presses are cool

See Tesla HotChips 21 and ’22 (Dojo slides are from the 22 talks)

Car Picture

