
© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Industrial Ranting about Current
Computer Micro-Architectures

Or – I’ve done this a while now in the Silicon Industry so you probably should listen as I say stuff

September 28, 2022

Eric Quinnell, Ph.D.

Tesla AI Hardware

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Topics
 CPU Selection in One Clear Graph
 Branch Predictors and Natural Law
 Variable Length Decoding and Why OP Caches are The Worst™
 SMT is The Worst™, except when it’s The Best™
 Tesla AI Dojo D1
 Apple A14
 Quinnell’s 2nd Law of Computer Arithmetic
 Shameless Tesla AI Day-2 Plug
 Q&A

Caveats
 I do not speak on behalf of Tesla. My opinions are my own and are expressed merely to educate new engineers on why

they’re wrong.
 All content presented here is public domain. Any speculation on CPU reverse-engineering is mine alone, but probably right
 I’m happy to talk to the Tesla HotChips 2022 “Dojo System” paper (am co-author), but you’ll not hear anything not already

disclosed

Topics and Caveats

2

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

CPU Selection
In One Easy Graph

3

https://images.anandtech.com/doci/15603/sched-990.png

Evolution of the Samsung Exynos CPU
Microarchitecture, ISCA 2020

• The Power-Perf plot can determine the entire
selection of an industrial CPU. In this case, this
graph represents the end of the Samsung
custom CPU effort

• “Burn Down” paper we wrote before shutting
project down, publish the good, future lecture
on the bad/ugly (like right now)

• ARM A76 (Ares) was a new uarch, a design
triumph, labeled the “custom CPU killer”

Project shutdowns are complex decisions, and the
M5 could have fixed this…but quite frankly, with this
single perf/power curve, would YOU fund a custom
team ($100sM/year) or buy it off-the-shelf?

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Mongoose M5 vs Ares A76

4

https://en.wikichip.org/wiki/File:cortex-a76_block_diagram.svghttps://en.wikichip.org/wiki/File:mongoose_5_block_diagram.svg

UOP Cache
(Disabled)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Reading the Power/Perf Curve

5

https://images.anandtech.com/doci/15603/sched-990.png

• Thermal constraints are the current greatest threat to
compute

• Boost Mode and Benchmarking isn’t useable compute –
greater than 2GHz sustained is rare

• Performance is won by IPC and fundamentals
• Cache size matters

• Not just IPC. Power to DRAM >> power to
Cache. Less I/O bandwidth.

• IPC Latency matters more than frequency
• Mongoose M5 16-deep mis-predict vs Ares

A76 11-deep mis-predict
• ROI on performance features matters

• “Will this feature provide more IPC than the
cache-area equivalent?”

• ASICs with Vertical Integration always win on their
application, full stop. Just have to pay the engineers for it.

• Citations? Sure!
• Apple A6-M1 with IOS
• Google’s TPU with Deep-Mind, Search
• GPU Shaders with API drivers
• Is this really in question?

Boost/Benchmarking
Frequency wins here

Web Browsing (phones)
Always-Running (servers)

IPC+Cache wins here

“Pocket Mode” (phones)
Embedded Space
Perf/Area wins here

ASICs + Vertical
Integration

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

“Real Code” is Indirect Threading

For Whom are you building machines?

 Governments use Fortran

 HPC, Gaming use C/C++ (and Excel spreadsheets)

 AI uses MACs and Python. (That’s pretty much it.)

 The Internet, VMs use JS and JITs (this is most of the world)
– https://browserbench.org/Speedometer2.0/

– That’s ~1B instructions / iteration to sort a 100-deep text list.

– Try it on your phone and laptop right now, see which is faster

– Indirect branches and integer ALUs

– This is for SW’s dev benefit, not HW. There are exponentially
more of them (SW), they win.

 We knew about this phenomenon in 2005. What is SPEC
benchmarking again?

– https://www.amazon.com/Virtual-Machines-Versatile-Platforms-Architecture/dp/1558609105

 The newest CPU uarchs are heavy with indirect-branch target
storage, algorithms like IT-TAGE (Seznec).

6

https://en.wikipedia.org/wiki/Threaded_code#Indirect_threading

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

 Dr. Daniel Jimenez (Texas A&M) in his perceptron-based branch-prediction
research shows that global-history (ghist) auto-correlation on generic code follows
a power-law. (I told you, Daniel and Jim that I’d bring this up someday)

 Dr. Tarjan and Dr. Skadron (Univ of VA) noted “Theta” for generic branches to be

𝜃 = 1.93𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠 +
𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠

2
= (1.93 + 0.5)𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠

= 2.43 ∗ 𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠

 Dr. James Dundas (ARM) recognized some time ago that:

φ =
1 − 5

2
= ~1.618 = "golden ratio“

φ =
3φ

2
= ~2.427

𝜃 =
3φ

2
∗ 𝑛𝑢𝑚𝑇𝑎𝑏𝑙𝑒𝑠

 Dr. Seznec has published GEometric History Length and O-GEHL predictors

 Dr. Yasuo Ishii (ARM) extended GEHL to local history

 Dr. Quinnell (me) asks – “Is code, therefore, constrained by natural law!?”

 Apparently you need a PhD to notice this kind of thing…

Side Quest – Speaking of Branch Prediction…

7

[Jimenez, lots of papers]

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Auto-Correlation of Ghist vs Branch Time Lag, CBP-5

8

0

0.2

0.4

0.6

0.8

1

1.2

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

8MB memcpy

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

lua

0

0.05

0.1

0.15

0.2

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

bzip2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

DGEMM

0

0.05

0.1

0.15

0.2

0.25

0.3

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

AutoCorrelation (abs value) 400 traces 100m branches

AutoC(abs)

average

golden*ln

Φ*ln(ghist)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Fibonacci in CBP-5

9

{0-3,0-5,1-8,2-13,3-21,5-34,8-55,13-89}

 I replaced all TAGE parameters with Fibonacci geometric series equivalents.
– MPKI was exactly the same
– Don’t believe me? Do it yourself! CBP-5 is public and available

 SHP – vs several successful hashes and their variants, various sizes, tables.
– Example below. Wasn’t always “lowest lowest” mpki, but certainly unbeatable when constraining ghist length

Run MPKI #Ghist bits

Variant of published
SHP hash

4.720 160

Fibonnaci 4.718 89

 Code, and therefore AI Robots, is constrained by Natural Law!
– We can (maybe) defeat them if the take over!

– Asimov is smiling.

 See me after lecture for a tin-foil hat

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Op Caches are The Worst™

AMD’s Zen 2
 Notice the “ITA” – Indirect Target Array. Notice its

expansion in subsequent CPUs..
 4x Int ALUs and 3x AGUs, LD/LD/ST
 6-wide INT dispatch, 8-wide Retire

Wait – 4-wide Decode!?! For 8-wide Retire?!

 Why? B/c x86 ISA is a variable-length decode
– Various techniques to up IPC – Marker bits, pre-decoders, collapsing

instruction queues, parallel speculative decoding

 Solution here is the OP Cache
– Repeated kernels can read out up to 8-mops / cycle
– OP Caches derive historically from Trace Caches, originally intended to

increase zero-bubble branches and instruction throughput
 Similar Block-Diagram for wider MOP decode in Intel’s Skylake uarch

10

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2#Block_Diagram

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Op Caches are The Worst ™

11

https://en.wikichip.org/wiki/intel/microarchitectures/tremont

OP caches are large, complex, make branch prediction logic
replicate, and use lots of power.

1. ~100-bit read/write array (vs the 16-32-bit original instruction)
2. Redundant branch prediction hardware
3. OP cache specific fetch-line buffering
4. OP cache micro-tags and CAMs in parallel with decode path

1-4 vs saving Decode power. Are we sure it’s less overall?
(Mongoose M5’s UOP Cache was not lower power overall)

Intel’s Tremont – No-OP Cache
 Intel’s Tremont avoided OP caches altogether, solving

the x86 decode/throughput by alternating basic-block
fetches across 2x fetch paths

 Result is an effective “2x3-wide decode” on two basic-
block fetch

 Note – are the “Reservation Stations” classic Tomasulo’s
algorithm, or are they clever PRFs? Each has a tradeoff.

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

OP Caches in ARM? RISC-V?
 Cortex A-77 did add a “MOP Cache”
 6-wide MOP “decode” vs 4-wide native decode
 A-77 still supports AArch32

– Samsung Mongoose M1-5 supported AArch32 and Thumb

 ARM is dropping support for Thumb/AArch32 in Makalu (2022)
generation, making all instructions 32-bit aligned

 RISC-V has optional variable-length instructions (16-bit) for
code compression. There is reserved space in case future
instructions want to go > 32-bits.

Variable length vs OP Cache tradeoff
 Variable length instructions allow code compression – great for

embedded applications
 High-perf CPU indirect-threaded code needs > 4-wide decode

to compete.
 OP caches are a variable-length instruction solution

Trends
 ARMv9 is transitioning to fixed length while RISC-V is adding

variable-length with reserved expansion
 Is a non-fixed instruction alignment considered “RISC”?

@ RISC-V – perhaps the proper way to support future instructions is
not to infinitely expand the space, but rather allow for deletion of
antiquated instructions.

12

https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a77

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

SMT – the good, bad, and always ugly

This really should be an entire talk
(and I need to take more time with citations here…maybe a grad student should do this as a paper)

SMT bad

Claim: SMT in an out-of-order, virtualized, non-shared context will be beaten by single-
threaded SMP

 2x85% IPC SMP cores at ½ the size beat ~120% IPC SMT

 Full-context SMT takes >> 10% area in reality. Find a die shot (not a paper or claim)
where this is untrue.

 “Noisy neighbor effect” with cross-polluting caches

 Spectre-style security problems

 HW-multi thread scheduling unable to predict SW multi-thread intent, forecasting,
prefetching

 All threads must sleep before powering down

 Out-of-order resources lost to hold variable SMT retire state

 Turn off hyperthreading and see for yourself. Did you lose anything?

SMT good

(“Poor-man’s out of order”)

Claim: SMT in a shared-context, SW controlled, scalar and in-order throughput machine
gains scale-able benefits of concurrent control and execution

 Qualcomm’s DSP Hexagon

 Tesla’s Dojo AI D1

13

https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-
against-intel-and-amd/9

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

High throughput, general purpose CPU

DOJO nodes are full-fledged computers
• Dedicated CPU, local memory, communication

interface

Superscalar, multi-threaded organization
• Optimized for high-throughput math applications

rather than control heavy code

Custom ISA optimized for ML kernels

M i c r o a r c h i t e c t u r e o f t h e D O J O n o d e

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

P r o c e s s i n g p i p e l i n e

32B fetch window holding up to 8 instructions

8-wide decode handling 2 threads per cycle

4-wide scalar scheduler, 4-way SMT
• 2 integer ALUs
• 2 address units
• Register file replicated per thread

2-wide vector scheduler, 4-way SMT
• 64B wide SIMD unit
• 8x8x4 matrix multiplication units

SMT support focuses on single threaded application
• No virtual memory, limited protection

mechanisms, SW-managed sharing of resources
• Typical application uses 1 or 2 compute threads

and 1-2 communication threads

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Pipeline width reduces progressively
• 8-way in Decode
• 4-way in the Scalar engine
• 2-way in the Vector engine

Simple primitives can execute early in Decode
• Looping, list parsing
• Predication

Scalar instructions
• Regular integer code, address generation
• Network synchronization primitives

Vector datapath
• 8x8 matrix multiplication instructions
• 64B SIMD pipeline
• Special ML formats (CFP8, storage CFP16)
• Special ML instructions (e.g., stochastic

rounding, etc.)

D a t a p a t h

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

What about Apple?
 Massive Caches

– Not really a mystery – seen from space

– Likely the greatest contributor to low energy –
extremely fewer accesses to DRAM than competitors

– No other ARM competitor comes even close to paying
the area for this significant advantage

 Measured massive Indirect Branch Target
chains

 Tons of simple ALUs, 3xLD to feed it

 Extremely short mis-predict pipe (IPC >>
frequency)

 No OP cache, 8-Wide decode fixed-width
instructions.

– Why not 10-wide? Why not more? Fixed width decode is cheap

 Vertical Integration with SW
– Adding cute ISA instructions does not make up for lacking this

 SMP, not SMT

17

https://images.anandtech.com/doci/16226/Firestorm.png

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Bonus Round: Quinnell’s 2nd Law of Computer Arithmetic

18

You cannot add faster than you can add

Fallacies include:
• Trying LUTs/ROMs/case statements instead of an adder for your “but I don’t need all adder bits” adder
• Attempting generate/kill derivatives on LOPs, but wanting a precise result (we call that an “adder”)
• Trying to be clever with carry-only trees combined with other carry only trees and mux inferring a sum bit (we call that an adder)
• Trying to deduce an adder answer or bit without “the carry”. Works for 99% of all possible cases you say, and only not that 1% “propagate carry” case

• The most common “compares” in all code are “== 0” or the identity compare. Which is a full carry. Code Gaussian doesn’t match the theoretical “universal hash” math spread.

• Trying to be clever with circuit tricks like domino logic or cascaded FETs (they’re adders with not-cmos!)
• “End-around-carry (EAC)” adders (it’s an adder and an incrementor that go as fast as…themselves)
• Thinking a $popcnt isn’t just a MUL compression and adder
• Trying “higher radix” and writing papers about non-memory formats to avoid carries

• Which you translate to/from 2s complement or IEEE format, which requires…yup, an adder and full carry BOTH ways. So your total time processing same answer is worse, congrats!!
• Nobody does kernels resident only in regfiles

If it has ANYTHING to do with adding, do “assign z = a + b” and watch synthesis beat you at it in all forms.

Really, I can’t read any more of these. Research somewhere else, put a fork in it, this one’s done. Very little in uarch has been scrutinized quite like the adder.

(What’s the 1st law? I don’t remember, nobody remembers the 1st law of anything)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Shameless Plug: AI Day 2

 Sept 30, 2022

 ~7:30-ish PM livestream

 Robots and Cars and Supercomputers

 You’re not watching “sportsball”
anyway, you nerds, you

19

Awesome Tesla technical links

 https://www.youtube.com/watch?v=jPCV4GKX9Dw – CVPR ’22
 https://www.youtube.com/watch?v=hx7BXih7zx8 – ScaledML ‘20 – at 8:40, see the “stop sign” problem
 https://www.youtube.com/watch?v=j0z4FweCy4M – AI Day 1, ’21
 https://www.youtube.com/watch?v=rsBbt3TxKGg – 3rd party video, but Giga Presses are cool
 See Tesla HotChips ‘21 and ’22 (Dojo slides are from the ‘22 talks)

© Copyright 2022 Tesla Motors, Inc. All rights reserved. All information here publicly available.

Car Picture

20

